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1. Introduction 

In the previous report, we investigated the mechanisms underlying the 
downregulation of full-length and splice variants of AR by the phytochemical berberine 
(BBR).  We concluded that BBR inhibits the transcription of the AR gene, leading to a 
similar decrease of the full-length AR (AR-FL) and AR-V7 at the transcript level.  However, 
the AR-V7 protein is much less stable than AR-FL; therefore, AR-V7 is depleted at a 
greater rate than AR-FL under BBR treatment.  By using a Pten conditional knockout 
model, we demonstrated that BBR is effective in blocking prostate cancer development.  
During the second grant period, we tested the anticancer efficacies of BBR against 
prostate progression after androgen deprivation and against castration-resistant prostate 
cancer (CRPC) driven by AR splice variants.    

 

2. Keywords  

Prostate cancer; androgen receptor; berberine; natural compound; Pten knockout 
mouse model; castration resistant prostate cancer; AR splice variants. 

 

3. Overall Project Summary 

Task 2.  To  evaluate  the  in  vivo  efficacy  of  berberine  against  prostate  cancer  
growth  in  Pten knockout mice. 

BBR inhibits the expression of AR and AKT in Pten-null prostatic tissues.  In 
the previous report, we presented the data on BBR inhibition of tumor development in 
intact Pten-null mice.  In the period, we analyzed the tissues obtained from this animal 
experiment by immunohistochemistry (IHC) staining for AR, total and phosphorylated 
AKT (serine 308 and 473), as previously described (1).   All images, excluding areas near 
the edges or with necrosis, were analyzed using the Image J Software (NIH). The staining 
intensity was scored as high, medium, and low, and cells in each category were counted.  
The results were presented as the percentage of cells in each category.   While having 
no effected on the distribution of cells, BBR treatment significantly lowered the percentage 
of cells with high staining intensity of AR, and increased the percentages of cells with 
medium or low staining for AR (Fig. 1, A vs E).  Similar observations were made for total 
AKT (B vs F), pAKT308 (C vs G), and pAKT (D vs H).   In summary, the IHC staining data 
showed BBR suppresses both the AR and the AKT pathways simultaneously.  The 
selectivity of BBR in AR and AKT inhibition in cancerous tissues with regard to is 
consistent with the tumor growth data. 
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AKT inhibition by BEZ235 is not sufficient to block prostate cancer 
development in Pten-null mice.   To evaluate the benefit of dual-targeting of AR and 
AKT by BBR, we set out test the efficacy in the Pten-null model with that of BEZ235, a 
PI3K and mTORC1/2 dual inhibitor which inhibits AKT phosphorylation by PDK1 and 
mTORC2 (2).   The experimental design is similar to that for BBR.   Male F2 Pten-/- mice 
identified by genotyping were 
randomly assigned to control 
or BEZ235 treatment group 
(n=6) at 12 weeks of age and 
received vehicle (10% 1-
methyl-2-pyrrolidone/ 90% 
PEG 400) or 45 mg/kg/day of 
BEZ235, respectively, 
through oral gavage.  The 
treatment continued for 9 
weeks and animals were 
sacrificed by CO2 inhalation at 
the end of experiment.  The weight of the genitourinary bloc (GU bloc), consisting of the 
prostate lobes, seminal vesicles, ampullary glands, bladder, proximal ductus deferens, 
and proximal urethra was excised en bloc, was used to represent prostate tumor burden.  
As shown in Fig. 2, there is little or no difference in GU bloc weight between the control 
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Fig. 2. BEZ235 is ineffective in blocking prostate cancer
development in Pten KO mice. A, The weight of the GU-bloc is
normalized by body weight and presented as mean ± standard
deviation, n=6. B, Representative photos of the GU bloc in each
group.
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Fig. 1.  IHC staining for AR and AKT expression in prostatic tissues.  A-D, tissues from Pten wild-type mice.   E-H, tissues 
from Pten knockout mice.  Image analysis was performed by the NIH Image J software.  The staining intensity in each cell was 
scored as high, medium, and low.  The results were presented as percentage of cells in each category.  *, P<0.05; **, P<0.01.
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and BEZ235 groups.  The lack of tumor inhibition is not due to lack of potency of the 
compound, as immunohistochemistry (IHC) staining analysis showed BEZ235 effectively 

reduced AKT phosphorylation in prostatic tissues from the Pten-null mice (Fig. 3).   Based 
on the reciprocal inhibition between AR and AKT, we hypothesized that BEZ235 
treatment led to induction of AR expression.  Indeed, IHC analysis showed an increase 
of AR staining in these tissues (Fig. 4).  These results suggest that suppression of the 
AKT pathway by BEZ235 is negated by a compensatory AR induction in the cancer cells.   
By comparing the efficacies of BBR and BEZ235, we conclude that it is necessary to 
inhibit both AR and AKT pathways, at least in this Pten-null model of prostate cancer. 

 

BBR inhibits castration-resistant progression of Pten-null prostate cancer.  
Pten-null mice were castrated at 12 weeks of age and randomly assigned to control and 
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Fig. 4.  BEZ235 treatment leads to an increase of AR expression in Pten-null mice.  A, 
prostatic tissues were staining by an antibody for AR; B, quantitation of the AR IHC results.
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treatment groups (n=9) and received vehicle (DMSO) or 5 mg/kg/day of BBR, respectively, 
through i.p. injection.  The treatment continued for 20 weeks and animals were sacrificed 
at the end of 32 weeks.   As shown in Fig. 5, BBR treatment significantly lowered the 
weight of the GU bloc.  IHC analysis showed BBR reduced the expression of AR and AKT 
in these tissues.  These results suggest BBR is effective in blocking tumor progression 
following androgen deprivation. 

 

 

 

 

 

 

 

 

 

 

 

Task 3.   To evaluate the in vivo efficacy of berberine against AR-fl- or AR-V- 
promoted CRPC growth.    

 BBR inhibits CRPC growth 
promoted by ARv567es.   In this 
experiment, we selected the LuCaP86.2 
xenograft model, which expresses 
predominantly the constitutively active AR 
splice variant ARv567es, which lacks the 
ligand-binding domain (3).  LuCap86.2 
tumors grow in a castration-resistant 
manner and were serially passaged in 
castrated SCID mice.  The tumors were 
cut into 25 mm3 pieces and implanted 
subcutaneously into castrated SCID mice 
at 8 weeks of age.  Tumor dimensions 
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Fig. 5.  BBR inhibits castration-resistant progression of Pten-null tumors.  A, representative 
images of GU-bloc in each group.  B, normalized GU bloc weight.  The results are presented as 
mean ± S.D. C & D, quantitation of IHC staining for AR and pAKT (473), respectively. *, P<0.05; **, 
P<0.01.

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

1 4 7 10 14 17 21 24

CON BBR

MDV Combination

Duration of treatment (days)

T
u

m
o

r
vo

lu
m

e
 (

m
m

3 )

* * *

*

* * ** ** **

# # #

Fig. 6.  BBR inhibits CRPC growth promoted by 
ARv567es.  LuCaP86.2 xenografts were established in 
castrated SCID mice and treated with vehicle, 
MDV3100, BBR, or MDV3100+BBR.  Tumor volume 
were calculated and presented as mean ± SD (n=4).  
*,P<0.05, **, P<0.01 vs control; #, P<0.05 vs 
MDV3100. 



5 
 

were measured twice weekly using a Vernier caliper and tumor volume were calculated 
by the following formula: length x width x height x 0.5236.  When tumor size reaches 200 
mm3, mice were randomized to one of four groups and receive vehicle, MDV3100 at 10 
mg/kg/day, BBR at 5 mg/kg/day, or the combination of MDV3100 and BBR, respectively, 
through i.p. injection.    This experiment was still ongoing at the time of this report and an 
interim analysis was conducted using data collected to this point (Fig. 6).   As expected, 
the antiandrogen MDV3100 did not alter the growth of LuCaP86.2 tumors during this 
treatment period (24 days).  In contrast, tumors in the BBR group showed significantly 
reduced growth rate after 14 days of treatment.  The BBR/MDV3100 combination was 
most effective in arresting the growth of this tumor model.  This interim analysis suggests 
that BBR not only is effective by itself, but also enhances the therapeutic efficacy of 
MDV3100 in CRPC expressing AR splice variants.  

 

4. Key Research Accomplishments 

 We have demonstrated the efficacy of berberine in preventing prostate cancer 
development and in blocking castration-resistant progression in the Pten-null 
model of prostate cancer. 

 We have shown that inhibition of the PI3K/AKT pathway is ineffective against 
prostate cancer development in a Pten-null environment, possibly due to a 
compensatory activation of the AR pathway. 

 We have provided the initial evidence that BBR is effective against castration-
resistant prostate cancer driven by an AR splice variant lacking the ligand-binding 
domain, and that it enhances the therapeutic efficacy of MDV3100 in this tumor 
model.  
 

5. Conclusion 

Through the experiments conducted in this peroid, we concluded that: 1) berberine is 
effective in preventing prostate cancer development in the Pten-null environment.  
Given its low toxicity profile and low cost, berberine is an excellent candidate as a 
preventive agent for prostate cancer.  The future plan is to conduct a prevention trial 
in patients at risk for prostate cancer;  2) berberine is effective in blocking prostate 
cancer progression following androgen deprivation therapy.   This result is significant, 
in view of the magnitude of challenge we are facing in the treatment of castration-
resistant prostate cancer. This finding provides a rationale for conducting a clinical 
trial using berberine as an adjuvant therapy to androgen deprivation;  3) berberine is 
promising in the treatment of castration-resistant prostate cancer expressing 
constitutively active AR splice variants.   Our immediate plan is to corroborate the 
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finding in the next grant period.  The clinical impact of this finding is significant.  
Recently studies have shown that the expression of AR splice variants confers 
resistance to MDV3100 (4,5).   This study could lead to the development of a 
combination strategy using berberine and MDV3100 to improve therapeutic efficacy 
and to combat the development of resistance to MDV3100.  

6. Publications, Abstracts, and Presentations 

Alison Egan, Yan Dong, Haitao Zhang, Yanfeng Qi, Steven P. Balk, Oliver Sartor. 
(2013). Castration-Resistant Prostate Cancer: Adaptive Responses in the Androgen 
Axis. Cancer Treatment Reviews 40:426-433. 

Haitao Zhang*, Yang Zhan, Xichun Liu, Yanfeng Qi, Guanyi Zhang, Oliver Sartor, Yan 
Dong. (2013).  Splicing variants of androgen receptor in prostate cancer. Am J Clin 
Exp Urol 2013;1(1):18-24. 

Bo Cao, Yanfeng Qi, Guanyi Zhang, Duo Xu, Yang Zhan, Xavier Alvarez, Zhiyong 
Guo, Xueqi Fu, Stephen R. Plymate, Oliver Sartor, Haitao Zhang*, and Yan Dong. 
(2014). Androgen receptor splice variants activating the full-length receptor in 
mediating resistance to androgen-directed therapy.  Oncotarget 2014. Mar 
30;5(6):1646-56.   

 *: corresponding author 

7. Inventions, Patents, and Licenses 

Nothing to report. 

 

8. Reportable Outcomes 

Nothing to report. 

 

9. Other Achievements 

Using preliminary data generated with the support of this grant, we have further 
developed the project into an application and submitted it to the American Cancer 
Society for Research Scholar Grant award.  The proposal, titled “Co-targeting AR 
and AKT by Berberine in Castration-resistant Prostate Cancer”, was awarded in 
March, 2014. 

 



7 
 

10. References 

1. Li J, Cao B, Liu X, Fu X, Chen L, Xiong Z, Sartor O, Dong Y, and Zhang H. Berberine 
suppresses androgen receptor signaling in prostate cancer.  Molecular Cancer 
Therapeutics 2011;10(8):1346-56. 

2. Serra V, Markman B, Scaltriti M, Eichhorn PJ, Valero V, Guzman M, et al. NVP-
BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth 
of cancer cells with activating PI3K mutations. Cancer Res 2008;68:8022-30. 

3. Sun S, Sprenger CC, Vessella RL, Haugk K, Soriano K, Mostaghel EA, et al. 
Castration resistance in human prostate cancer is conferred by a frequently occurring 
androgen receptor splice variant. J Clin Invest 2010;120:2715-30. 

4. Li Y, Chan SC, Brand LJ, Hwang TH, Silverstein KA, Dehm SM. Androgen receptor 
splice variants mediate enzalutamide resistance in castration-resistant prostate 
cancer cell lines. Cancer Res 2013;15;73(2):483-9. 

5. Cao B, Qi Y, Zhang G, Xu D, Zhan Y, Alvarez X, Guo Z, Fu X, Plymate SR, Sartor 
O, Zhang H, and Dong Y. Androgen receptor splice variants activating the full-length 
receptor in mediating resistance to androgen-directed therapy.  Oncotarget 2014; 
30;5(6):1646-56.   

 

11. Appendices 

The 3 papers listed under “Publications, Abstracts, and Presentations” are attached 
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The androgen signaling axis in prostate cancer is associated with multiple adaptive mechanisms in
response to castration. Herein we review these adaptations with an emphasis on recent molecular
insights into the growth and development of castration resistant prostate cancer (CRPC). Alterations
include both conventional and novel intracrine androgen synthesis pathways and androgen transport
as well as androgen receptor (AR) overexpression, mutation, and splice variation. Each of these underly-
ing mechanisms are potentially linked to post-castration growth, especially after treatment with newer
hormonal agents such as abiraterone and enzalutamide. Post-translational AR modifications are well doc-
umented and these can affect receptor activity, stability, localization, and interaction with other proteins.
Changes in recruitment of androgen receptor associated co-activators/repressors and a distinct AR-
induced transcriptional program can dramatically alter proliferation, invasion, and metastasis in a ligand
and context-dependent manner. Numerous previously uncharacterized non-coding RNAs, some of which
are androgen regulated, may also have important biological function in this disease. Taken together, the
view of CRPC has changed dramatically in the last several years. This has occurred not only within the
setting of multiple treatment paradigm changes, but also as a multiplicity of potential molecular mech-
anisms underlying this disease state have been explored and discovered.

� 2013 Elsevier Ltd. All rights reserved.
Introduction

Prostate cancer is by far the most common non-skin cancer and
currently the second leading cause of cancer death in men in the
United States. Both normal and malignant prostate epithelial cells
depend on androgen dependent activation of the androgen recep-
tor (AR) for prostate-specific antigen (PSA) production and sur-
vival. Androgen deprivation therapy (ADT) via surgical or medical
castration remains the standard form of treatment, and has been
so for the last 70 years for clinically advanced prostate cancer
[1]. Disease progression after initial ADT, despite castration levels
of testosterone, is termed castrate resistant prostate cancer (CRPC).
This may either be metastatic or non-metastatic and the natural
history is distinct. For men with metastatic disease, castration
resistance as measured by PSA rise develops approximately
16 months after initial ADT [2]. This is markedly distinct from
those with no metastases. For patients who start ADT for PSA only
progression, time to castration resistance is in part dependent on
PSA doubling time, but has been reported to be as long as 10 years
[3].

Many studies have found that AR is present in both initially
diagnosed prostate cancer cells and in the vast majority of cells
in prostates from CRPC patients [4]. PSA, a known AR target gene,
will eventually rise in most CRPC patients, serving as a marker that
the androgen axis is still functional despite low circulating levels of
serum androgens. Multiple mechanisms have been proposed for
the continued activation of AR and the development of CRPC.
Molecular studies dissecting the androgen signaling pathways in
CRPC are ongoing with multiple new insights in the last several
years. This review covers a broad review of these potential mech-
anisms (see Table 1).



Table 1
Proposed mechanisms for continued AR signaling in CRPC.

Intracrine synthesis of androgens

Amplification and/or overexpression of AR
Overexpression and/or polymorphism of steroid transporters
Mutation of the AR gene
Constitutively-active AR splice variants
Alteration in AR co-regulators
Crosstalk between AR and other signaling pathways
Post-translational modifications of AR
Distinct AR mediated transcriptional programs

A. Egan et al. / Cancer Treatment Reviews 40 (2014) 426–433 427
Androgen receptor: overview

AR is a member of the steroid receptor superfamily that acts
predominately as a ligand-dependent transcription factor after
binding to various DNA binding sites. The AR gene is located on
the X-chromosome (Xq12), made up of 8 exons [5]. AR consists
of an N-terminal domain (NTD) which contains a transactivation
domain (AF1) that serves as a primary transcription regulatory re-
gion (see Fig. 1). The central DNA binding domain (DBD) contains
two zinc fingers that connect to the hinge region allowing DNA rec-
ognition, dimerization, and stabilization. The DBD is highly homol-
ogous with the DBD of the human glucocorticoid receptor and the
human progesterone receptor. The hinge region contains a canon-
ical nuclear localization signal that regulates the nuclear import of
the receptor. The hinge region is also a target site for acetylation,
ubiquitination, and methylation [6]. The C-terminal domain
(CTD) contains the ligand binding domain (LBD) and the AF2 do-
main, a second transcriptional regulation domain. The NTD and
CTD both contain transactivation domains (AF1/AF2), but AF1 is
considered dominant in most AR signaling studies conducted un-
der normal physiological conditions. This is particularly relevant
in the study of AR splice variants (vide infra).

After synthesis of AR protein, a variety of conformational
changes are required to generate a receptor with high-ligand-bind-
ing affinity. This requires a complex cascade of events initiated by a
‘‘foldosome’’ that includes complex interactions of a variety of
chaperone proteins including HSP40, HSP90, and HSP23 [7]. Upon
ligand binding, further conformational changes of AR occur,
Fig. 1. Schematic representation of the structure of the AR gene, protein, and the two
mediates AR DBD-dependent dimerization.
leading to intra-receptor NTD/CTD interaction followed by translo-
cation of the ligand-bound receptor to the nucleus and homodi-
merization. Various studies now distinguish nuclear and
cytoplasmic AR in both clinical specimens and pharmacological re-
sponses, with the nuclear AR contributing to androgen-axis signal-
ing via transcriptional regulation [8].

In the nucleus, the ligand-bound AR homodimers recruit vari-
ous co-activators and co-repressors, bind to androgen-response
elements (ARE), and lead to a broad program of transcriptional
activation in AR target genes such as PSA and TMPRSS2. AR-regu-
lated target genes can be both up- or down-regulated and can vary
according to ligand concentration. AR target genes vary in cells de-
rived from hormone sensitive cancer as compared to cells derived
from CRPC.
Intracrine synthesis of androgens

CRPC tissue exhibits persistent levels of androgens, despite ADT,
albeit some androgen levels are lower compared to hormone-naïve
tissue [9,10]. Studies have shown the upregulation of steroidogenic
enzymes in both model CRPC systems and in tissue from CRPC pa-
tients suggesting increased intratumoral synthesis of androgens
[11]. In metastases of CRPC patients, relative to primary tumors,
there is increased expression of a number of genes involved in
androgen metabolism including HSD3B2 (3 beta-hydroxysteroid
dehydrogenase), AKR1C3 (also known as 17 hydroxysteroid dehy-
drogenase type 5 or hydroxysteroid 17-beta-dehydrogenase 5),
AKR1C2 (3a-hydroxysteroid dehydrogenase), AKR1C1 (20 alpha-
hydroxysteroid dehydrogenase), SRD5A1 (5-alpha reductase type
1), and UGT2B15 (UDP-glucuronosyltransferase 2B15). Of note,
AKR1C3 is involved in the conversion of androstenedione to testos-
terone; SRD5A1/2 converts testosterone to DHT (see Fig. 2). Other
investigators have reported variations on this theme [12–14] but
taken together, from a functional perspective, these changes are
compatible with the over-arching hypothesis that CRPC cells can
synthesize potent androgens from various steroidal precursors.

The conventional mechanisms of androgen synthesis are
emphasized by many but alternative mechanisms of testosterone
and DHT synthesis are also demonstrated in CRPC (see Fig. 2).
Androstenedione may be 17-keto reduced to testosterone, and/or
zinc fingers in AR DBD. H, hinge region; P-box mediates DNA recognition; D-box



Fig. 2. Androstenedione (AD) can be converted to testosterone directly or it can be
5-alpha reduced to 5-alpha-dione. DHT (dihydrotestosterone) can then be synthe-
sized directly (via 17-beta HSD) or indirectly as shown above. Other abbreviations
include T (testosterone), DHT (dihydrotestosterone), DHEA (dehydroepiandroster-
one), AD (androstenedione), AST (androsterone), 5a-dione (5a-androstenedione),
and Adiol (5a-androstane-3a,17b-diol). Enzymes include 3aHSD or 3bHSD or
17bHSD (3a or 3b or 17b-hydroxysteroid dehydrogenases, respectively), or SRD5A
(steroid-5a-reductase). Figure from K.H. Chang et al. [15].
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5a reduced by to 5a-dione. In cell lines derived from CRPC pa-
tients, the reduction of androstenedione to 5a-dione occurs earlier
and more rapidly than the 17-keto reduction to testosterone sug-
gesting primary utilization of the pathway that synthesizes DHT
from precursors other than testosterone. Assays in fresh tumor
samples confirm the cell line findings [15]. The SRD5A1 enzyme
is dominant over the SRD5A2 enzyme in this process [11,15]. 5a-
Dione can be converted into DHT via two different mechanisms,
either via the direct 17-keto reduction of 5a-dione by AKR1C3, or
via conversion of 5a-dione to androsterone, and then conversion
of 5a-androstane-3a,17b-diol to DHT. Interestingly in these exper-
iments using CRPC cells, the dominant form of DHT synthesis does
not appear to involve testosterone as precursor. ‘‘Back door’’ syn-
thesis of DHT is also possible via 5a-reduction of either progester-
one or 17a-hydroxy-progesterone [15]. These reductions are
followed by a series of enzymatic conversions similar to the classic
DHT steroidogenesis pathway except that conversion of testoster-
one to DHT is bypassed [15]. Whether or not the ‘‘back door’’ path-
way is critical for CRPC development is not yet clear.
Steroid transporters

The efficiency of androgen transport has been shown to affect
both efficacy of ADT and transition rate to CRPC. The solute carriers
(SLCOs) are a complex family of genes that are involved in trans-
port of organic molecules across cell membranes. The proteins de-
rived from these genes are termed organic acid transporters
(OATs). Several of these transporters, including those derived from
the SLCO2B1 and SLCO1B3 genes, have significantly increased
expression in metastatic CRPC tissues compared to primary can-
cers [16]. Certain single nucleotide polymorphism (SNP) variants
of SLCO2B1 are associated with shorter responses to ADT (hence
more rapid CRPC development). One of these SLCO2B1 risk SNPs
is exonic, and two are intronic. There also appears to be a gene–
gene interaction between the SLCO 2B1 SNPS in terms of time to
progression post-ADT. Increasing the number of risk SNPs to 2 or
more is associated with a shortened time to progression post-
ADT compared to those with zero to one risk genotype [17]. There
was an 18 month survival difference if 3 risk genotypes were pres-
ent compared to none/one and a 12 month difference if 2 risk
genotypes were present compared to none/one [17]. In a separate
study of CRPC patients, individuals with SLCO1B3 334GG/699AA
haplotype showed longer median survival and improved survival
probability at 10 years than patients carrying TT/AA and TG/GA
haplotypes [18].
The SLCO transporters are involved in various steroid hormonal
uptakes in a complex fashion. SLCO2B1 is found in multiple tissues
and is involved in transport of compounds including atorvastatin,
DHEAS, and estrone-3 sulfate. One of the variants of SCLO2B1 asso-
ciated with more rapid post-ADT progression is also associated
with enhanced transport of dehydroepiandrosterone sulfate
(DHEAS), increased AR expression, and increased PSA expression
using an in vitro prostate cancer model [17]. SLCO1B3 is primarily
found in liver and cancer cells and transports testosterone across
membranes in a SNP dependent manner. One of the provocative
aspects of the OATs is that they are potentially ‘‘druggable’’ targets.
We note that atorvastatin strongly interacts with SLCO2B1 and
that (hypothetically) this observation could have therapeutic
implications.
AR overexpression

CRPC has been shown to express more AR than benign tissue
and hormone naïve cancers [4,19]. Increased AR expression may
sensitize the receptor to low levels of androgen [20]. Donovan
et al. demonstrated that an increase in nuclear AR expression in ad-
vanced disease in either diagnostic biopsy or radical prostatectomy
samples was associated with reduced time to prostate-cancer spe-
cific mortality [21].

One mechanism for AR protein overexpression is via AR genetic
amplification, which has been reported in approximately 30% of
CRPC cases [22]. An increase in AR mRNA levels without genomic
amplification has also been well described [12]. A number of po-
tential links between AR expression and other signaling pathways
are postulated. AR signaling in normal prostate decreases AR gene
transcription via lysine specific demethylase I recruitment and
H3K4me1,2 demethylation of a specific enhancer in intron 2 of
the AR gene [23,24]. Considerable data now suggest that ‘‘relief’’
from AR mediated repression of AR expression can increase AR
mRNA in CRPC [23,24]. A link between retinoblastoma protein
(RB1) loss and AR expression may be important as well. RB1 loss
is frequently seen in transition to CRPC and is associated with poor
clinical outcomes. By losing RB1, the transcription factor E2F1 is in-
creased, driving AR overexpression via an increased transcription
rate [25]. Micro-RNAs such as miR-let-7c may also serve as impor-
tant regulator of AR expression. Down-regulation of Let-7c is inver-
sely correlated with AR expression, whereas the expression of
Lin28 (a repressor of let-7) is positively correlated [26]. These types
of studies suggest potential new drug targets to decrease AR
expression in selected patients.
AR mutations in CRPC

Loss-of-function, germline mutations of AR are frequently asso-
ciated with androgen insensitivity syndrome but AR mutations in
prostate cancer are almost exclusively somatic and often associ-
ated with gain-of-function [27]. In general, the frequency of AR
mutation is lower in untreated, hormone-sensitive prostate cancer
than in CRPC [28]. Employing exome sequencing, Grasso et al. [29]
reported somatic AR mutations in 5 of 50 cases of lethal, heavily
pre-treated CRPC, but none of 11 cases of untreated, localized pros-
tate cancer.

The higher incidence of AR mutations in CRPC suggests an adap-
tive response and a ‘‘Darwinian’’ mutant-AR clonal selection in
some cases [30,31]. This hypothesis is further supported by the
observation that AR mutations are more frequent in patients trea-
ted with an anti-androgen/castration combination as compared to
castration alone [31]. Mutations of the AR gene most frequently
localize to exons that encode the LBD (�49%), followed by the N-
terminal domain (�40%), the DBD (�7%), and the hinge domain
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(2%). Mutations are rarely found in untranslated regions [27].
Mutations in the LBD could potentially affect the ligand specificity
of AR, allowing it to be activated by non-androgenic steroids, or
anti-androgens, in a promiscuous manner.

The T877A mutation, which has been described by multiple
investigators, expands AR ligand binding to estrogen, progestin, se-
lected corticosteroids, and selected anti-androgens [32]. Another
mutation in the ligand-binding pocket, H874Y, was identified in
CRPC patients treated with flutamide. This mutation also increases
ligand promiscuity, allowing DHEA, estradiol, progesterone, and
hydroxyflutamide to activate transcription in various model sys-
tems [33]. Mutations outside of the LBD could cause gain-of-func-
tion or loss-of-function of the receptor by influencing on nuclear
localization, co-regulator binding, protein stability, and promoter
selectivity [34]. Constitutively active mutants have been described
in the regulatory NTD (G142V, M523V, G524D, and M537V) [35].

When certain steroid or steroid binding treatments are with-
drawn (flutamide, bicalutamide, nilutamide, megestrol, cyproter-
one acetate, prednisone, or estramustine), there is potential for
improvement in PSA and/or other parameters of disease progres-
sion [36]. Whether or not mutated AR is responsible for these with-
drawal responses is not clear but laboratory-based experiments
clearly uphold the feasibility of such a hypothesis.

Taken together, AR mutations in CRPC potentially allow for con-
tinued ligand dependent activation of AR by creating promiscuous
ligand binding, altered binding of co-regulators, and/or alterations
in genomic regulatory element binding. More studies are needed to
assess the clinical impact of these mutations on disease progres-
sion. Better categorization of these mutants in patients may pro-
vide a greater degree of personalization of therapeutic selection.

AR splice variants

A large number of AR splice variants (AR-Vs) have been recently
identified and characterized in CRPC patients (see Fig. 3). These
variants have insertions of cryptic exons downstream of the se-
quences encoding the DBD or deletions of the exons encoding
the AR-LBD, resulting in a disrupted AR open reading frame and
the expression of truncated AR-V proteins devoid of the functional
Fig. 3. Schematic representation of the structure of AR-FL and AR-V transcrip
LBD [37–42]. The majority of the AR-Vs identified to date displays
constitutive activity. Two major AR-Vs, AR-V7 (also named as AR3)
and ARv567es, have been shown to be capable of regulating target
gene expression in the absence of the full-length AR (AR-FL) signal-
ing. Profiling of gene expression changes after knockdown or
ectopic expression of AR-V7 or ARv567es suggests that AR-Vs
and AR-FL regulate an overlapping yet distinctive set of target
genes [43–45]. These studies are rapidly evolving and significant
differences in the AR-V transcriptome have been identified in dif-
ferent studies, possibly due to the use of different model systems.

AR-Vs are prevalently upregulated in CRPC compared to hor-
mone-naïve cancers, and can emerge as an adaptive response to
therapies targeting the androgen signaling axis, especially new po-
tent drugs such as abiraterone and enzalutamide [46,47]. It is
important to recognize the existence of discrepancy between the
abundance of AR-V mRNAs and that of AR-V proteins reported in
clinical specimens. Although the levels of AR-V mRNAs have been
reported to be relatively low, Western analyses of 13 CRPC bone
metastases demonstrate that the levels of AR-V proteins could con-
stitute a median of 32% of the AR-FL protein level [39]. In 38% of
these CRPC bone metastases, the AR-V proteins are expressed at
a level comparable to that of the AR-FL protein [39].

There is now intriguing evidence supporting the important con-
tribution of the constitutively-active AR-Vs to the development of
castration resistance. Ectopic expression of AR-V7 or ARv567es
confers castration-resistant growth of LNCaP xenograft tumors
[42], whereas specific knockdown of AR-V7 attenuates the growth
of castration-resistant 22Rv1 xenograft tumors in castrated host
[38]. In addition, AR-V7 or ARv567es expression level has been
shown to be associated with adverse clinical outcomes. Higher
expression of AR-V7 in hormone-naïve prostate tumors predicts
increased risk of biochemical recurrence following radical prosta-
tectomy [38,40]. Patients with high AR-V7 or detectable ARv567es
expression have significantly shorter cancer-specific survival than
other CRPC patients [39]. Thus, the extensive in vitro and xenograft
literature on AR-V expression translates into clinically relevant
observations.

In addition to the role of the constitutively-active AR-Vs in pro-
moting castration-resistant progression after first-line ADT, their
ts and proteins. H, hinge region; U, untranslated region; ZF, zinc finger.
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lack of the functional LBD also predicts resistance to the new
androgen-axis-targeting drugs, such as abiraterone and enzaluta-
mide [46,47]. Several natural or synthetic compounds have been
shown pre-clinically to inhibit AR-V actions [48–52]. Targeting
the AR-Vs with these novel agents is an important concept in the
therapeutic advances against CRPC, but all of these agents will re-
quire clinical trials for proof of action.
Alterations in AR co-regulators

Over 170 potential co-regulators of AR have been identified that
bind to AR, stabilize the protein, and lead to either increased or de-
creased transcriptional activity by altering ligand specificity or
allowing transactivation of AR in low levels of androgen [53]. This
deregulated co-regulator expression affects AR activity and is
repeatedly hypothesized to contribute to the development of CRPC
[54,55].

Members of the steroid receptor co-activator family including
SRC-1, SRC-2/TIF-2, and SRC-3, have been found to bind the AR
NTD and activate AR transactivation via histone acetyltransferase
activity as well as by recruiting additional co-activators including
CBP/p300. Members of the SRC family are increased in prostate
cancer; even higher levels are seen in CRPC [53,55]. SRC-2 has been
frequently noted to be amplified as well [54]. These higher levels
may lead to increased sensitivity of AR to weak agonists such as
androstenedione and DHEA [55]. When phosphorylated by mito-
gen-activated kinase (MAPK) signaling pathways, SRC1 can acti-
vate AR in the absence of androgens to the same magnitude as
potent androgens [56]. p300 can also acetylate AR [57], and this
post-translational change can enhance co-activator and inhibit
co-repressor binding to AR [58].

Co-activators ARA70 and ARA55 also affect ligand specificity of
the receptor. ARA70 overexpression enhances AR activation in re-
sponse to normal weak agonists or to enable antagonists to act
as agonists [59]. ARA55 binds to AR leading to an increase in AR
activity and altered specificity to binding ligands [58]. Some stud-
ies have shown increased expression is associated with shorter
recurrence-free survival and overall survival in CRPC patients [60].

Recently, a member of the Snail family of transcription factors
(Slug or SNAI2), has been implicated as an AR target gene that
can both help upregulate AR and enhance AR-mediated signaling
in both wild type, and splice variant, expressing systems [61]. Slug
may be particularly important given it acts as a potential oncogene
in other cancers and can trigger epithelial–mesenchymal transition
(EMT), a frequently described attribute of advanced CRPC [62].

Research on AR co-regulators has focused on both co-activators
and co-repressors [63]. SMRT and NCoR are particularly important
co-repressors, and their recruitment may play a role in mediating
the inhibition of androgen-axis signaling by anti-androgens. Thus
alteration in the relative ratios of co-repressors/co-activators
recruitment may play a role in the development of CRPC. The scope
of this article prevents a full discussion of this area.
Crosstalk with growth factor and cytokine signaling pathways
and post-translational AR modifications

Extracellular peptides, including cytokines and growth factors,
along with their downstream intracellular signaling cascades, have
been implicated in prostate cancer. In CRPC, the crosstalk between
these signaling pathways and AR provides a ligand-independent
mechanism to sustain AR activation and promote cell growth
[6,53,56,64–66].

Post-translational modifications of nuclear receptors including
AR effect receptor function, stability, localization, and interactions
with other proteins. Phosphorylation, sumoylation, acetylation,
and ubiquitination are potential reversible mechanisms behind
these alterations.

AR phosphorylations have been described both at serine/threo-
nine residues and various tyrosine residues. MAPK, AKT, protein ki-
nase A, protein kinase C, src-family kinases and Ack1 kinases have
all been implicated. In some cases these kinase pathways are
thought to be driven by various cytokines and growth factors.
Phosphorylation of the AR can localize the receptor to the nucleus
and alter AR-dependent transcriptional activity [64–66].

Acetylation occurs at highly conserved lysine residues in AR due
to a physiologic stimulus including DHT and the recruitment of
co-activators such as p300, which contain intrinsic histone
acetyltransferase activity [6,66,67]. Ligand induced AR function is
enhanced by this acetyltransferase activity, and augments AR
activity at promoter sites of cell cycle genes leading to increased
cell proliferation. Mutations in the hinge region can lead to loss
of acetylation and decreased DHT binding and signaling [6,66].

SUMOylation typically results in repression of AR. This process
results in the attachment of small ubiquitin like modifiers (SUMO)
to AR with reversal via SUMO specific proteases including SENP1.
AR is modified by SUMO-1 in an androgen dependent manner lead-
ing to rapid reversal of AR function. Mutations at the site of
SUMOylation within the NTD lead to decreased SUMO-1 binding
and enhanced transcriptional activity of AR [6,66,68,69].

The ubiquitin E3 ligase, RNF6, induces AR ubiquitination and
promotes AR transcriptional activity. RNF6 is overexpressed in
CRPC tissues and has been linked to prostate cancer cell growth
after androgen-depletion. Data suggest that RNF6-induced ubiqui-
tination regulates both AR transcriptional activity and specificity
by altering cofactor recruitment [66,68,70].

These mechanisms illustrate the effects of post-translational
modifications and their impacts on AR activity. Further in vivo
studies are needed to address their clinical significance and influ-
ence on disease progression, as well as their potential for develop-
ing novel prostate cancer specific therapies.

Altered gene expression in CRPC

Recent studies have shed considerable insight into how AR sig-
naling assists cancer cells in adapting to the decline in androgen
levels and how AR transcriptional networks are regulated in CRPC,
as compared to androgen-dependent prostate cancer. A variety of
studies reveal that AR can alter the transcription of a significant
number of genes mediating androgen synthesis, DNA synthesis,
and cell cycle progression. Chromatin immunoprecipitation cou-
pled with sequencing (ChIP-seq) of DNA adjacent to histone marks
H3K4me1 and H3K4me3 in CRPC tissue reveal significant overlap-
ping binding sites with AR (26% of AR binding sites overlap with
these H3K4 peaks in CRPC tissue) [71]. These and other studies
emphasize the critical importance of histone methylation in regu-
lating AR mediated transcription.

Urbanucci et al. demonstrate that, when AR-transfected LNCaP
cells are exposed to low concentrations of androgens, even a mod-
est overexpression of AR could lead to a significant increase in the
number of binding sites in the AR cistrome, as well as the strength
of AR binding [72]. Moreover, in these cells, receptor binding to
chromatin can take place at a concentration of androgen that is
100-fold lower than that in control cells. The canonical andro-
gen-response elements (AREs) and ARE half-sites are among the
most significantly overrepresented motifs in this setting [73].
Additional data suggest that AR may be preferentially recruited
to chromatin sites that lack the canonical AREs or ARE half-sites
by tethering proteins [74].

Via gene expression profiling, a distinct set of genes are clearly
upregulated in CRPC compared to the androgen-dependent state.
Many AR driven promoters in CRPC tissue demonstrate preferential
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co-occurrence of AR binding sites and histone mark H3K4me3. AR
recruitment to chromatin associated with the H3K4me1 histone
marks is more pronounced at enhancers rather than promoters
[71,72]. A complex but distinct transcription program has been
identified in CRPC resulting in cellular growth rather than differen-
tiation [72]. In normal prostate cells, AR signaling primarily
promotes a differentiation of cells. In CRPC, unlike androgen-
dependent cells, AR directly promotes transcription of M-phase cell
cycle regulatory genes such as CDC20, UBE2C, CDK1, and these
alterations increase cellular proliferation in combination with
various collaborating transcription factors (such as FoxA1) and
co-activators (such as MED1).

As an example of re-directed gene expression in CRPC, the ubiq-
uitin-conjugating enzyme E2C (UBE2C) may be particularly impor-
tant as expression is critical for inactivation of the cell cycle
M-phase checkpoint [72]. In CRPC models, two UBE2C gene enhan-
cer sites contain H3K4me1 and H3K4me2. These epigenetic marks
allow FoxA1 and MED1 binding, which then directs AR binding to
the enhancer, thereby activating AR-dependent UBE2C transcrip-
tion. Both the H3K4 marks and the ‘‘pioneer factor’’ FoxA1 are
required for AR binding to occur. The critical role of UBE2C is sug-
gested by silencing of UBE2C, which stops proliferation in CRPC
models. Interestingly, though silencing of FOXA1 abolishes AR med-
iated UBE2C transcription in CRPC models, it has no effect on tradi-
tional AR target gene expression (PSA and TMPRSS2) in androgen
dependent models, suggesting the critical importance of FoxA1 in
unique CRPC transcription programs [72].

It is not appropriate to view AR-mediated CRPC gene repro-
gramming solely in terms of gene expression. Liganded AR has dis-
tinct effects on AR mediated transcription that are dependent on
both ligand concentration and cellular context. One hypothesis
suggests that androgen levels in CRPC cells are adequate to stimu-
late selected enhancer elements, but are not adequate to effec-
tively recruit AR to suppressor elements that can negatively
regulate cellular proliferation. Under these circumstances, both
the concentration of ligand and the CRPC context are keys to
understanding AR regulated gene expression [24].

Enhancer of zeste homolog 2 (EZH2), which is over-expressed in
CRPC (and many other advanced cancers), can functionally switch
from transcriptional repression in normal cells to gene activation
in CRPC. EZH2 phosphorylation at Ser21, potentially an Akt medi-
ated event in CRPC, promotes association with an AR-containing
complex and dramatically alters expression of a large number of
transcripts involved in cellular proliferation. Suppression of EZH2
decreases growth rates in various CRPC model systems suggesting
potential as a drug target [75].

Another example of dramatic alterations in the AR cistrome in-
volves the AR-regulated TMPRSS2:ERG fusion gene. Expression of
the TMPRSS2:ERG fusion gene is restored in CRPC, in concert with
activation of AR transcriptional activity, and a continued important
role for ERG in CRPC has been postulated [23]. In CRPC cells, ERG
over-expression redirects AR to a set of genes (including the poten-
tially important SOX9) that are not normally androgen stimulated
[76].

Taken together, AR gene expression signatures in CRPC are dy-
namic, context-dependent, and involve hundreds of transcripts
(both coding and non-coding) that promote cell proliferation,
motility, and invasion. Significant variations are noted between cell
cultures and human samples [71], thus caution is advised in over-
interpreting cell culture studies. Developing gene expression sig-
natures with clinical relevance is an ongoing goal [71].

Non-AR mutations in CRPC

In a study of metastatic CRPC tissues derived from autopsy
specimens, mutations were recurrently noted in a variety of
exomes including those derived from p53, ZFHX3, RB1, PTEN,
APC, MLL2, OR5L1 and CDK12 [29]. These appear to constitute
adaptive responses that arise in CRPC but are distinct from those
seen in the AR-axis. Next-generation sequencing promises to fur-
ther elucidate further genomic alterations/mutations in both cod-
ing and non-coding regions of the genome. This area will rapidly
progress in the near future. Whether clinically actionable muta-
tions will arise from these analyses is unclear. Additional focus
on this important arena is beyond the scope of this manuscript.

Non-coding RNAs

This complex arena is only now beginning to be explored. Re-
cent studies of the human transcriptome indicate that the number
of non-coding RNAs is in far excess of the number of protein coding
genes. Non-coding RNAs vary tremendously in size. Thus far,
microRNAs are among those best studied given their stability and
annotation. Androgens can up- or down-regulate a number of
microRNAs, with exact results being dependent on the model stud-
ied [77]. Androgen represses the miR-99a/let7c/125b-2 cluster
[26]. Serum samples from metastatic CRPC patients exhibit distinct
circulating microRNA signatures. miR-375, miR-378, and miR-141
are over-expressed in serum from CRPC patients compared with
serum from low-risk localized patients, while miR-409-3p is un-
der-expressed [78]. Among longer non-coding RNAs, approxi-
mately 120 are transcriptionally dysregulated in prostate cancer
[79]. One of these, PCAT-1 has been potentially implicated in ad-
vanced disease [80]. Considerable evolution in this area is expected
in the next several years.

Conclusion

Multiple adaptive mechanisms involve the androgen signaling
axis in CRPC. Alterations in the AR-axis include altered ligand/
receptor interactions, and/or altered transcriptional response to
AR. Both AR hypersensitivity due to AR overexpression and intratu-
moral androgen synthesis have been shown to continue androgen
dependent growth despite a relatively hormone-depleted environ-
ment. AR mutations are noted, especially in tumors treated with
selected anti-androgens. AR splice variants can create a constitu-
tively active receptor, alter recruitment of co-activators/repressors,
and alter gene expression leading to sustained CRPC growth.
Changes in co-regulator expression and various polymorphisms
in androgen transporters have also been identified. Ligand inde-
pendent activation of AR has been seen with cross talk between
extracellular peptides, intracellular kinase pathways, co-regulatory
proteins, and intrinsic activation of AR. Post-translational modifi-
cations can affect AR activity, stability, localization, and interaction
with other proteins. A distinct AR-induced transcriptional program
leading to proliferation, invasion, and metastasis provides an addi-
tional important mechanism for the development of CRPC. The
exploration of numerous uncharacterized non-coding RNAs, some
of which are androgen-regulated, may also have important biolog-
ical functions in this disease. Non-AR-axis mutations are also
increasingly being documented and their relevance to the growth
of CRPC is currently being explored. In summary, CRPC develop-
ment and progression is centered, in part, around adaptations of
the androgen signaling, opening doors for continued research and
potential development of novel therapeutic concepts.
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Abstract: Significant advances in our understanding of continued androgen receptor (AR) signaling in castration-
resistant prostate cancer have led to the development and FDA approval of two next-generation androgen-directed 
therapies, abiraterone and enzalutamide. These new therapies heralded a new era of prostate cancer therapy. 
However, disease progression during androgen-directed therapies remains the most critical challenge in the clinical 
management of prostate cancer. Accumulating evidence points to an important contribution of constitutively-active 
AR splice variants to AR-driven tumor progression during androgen-directed therapies. In this review, we will focus 
on the structure, activity, detection, clinical relevance, and mechanisms of production of AR splice variants. 
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Introduction

Prostate cancer is the most common non-skin 
cancer and the second leading cause of cancer 
mortality in men in the United States. Androgen 
deprivation therapy, which disrupts androgen 
receptor (AR) signaling by reducing androgen 
levels through surgical or chemical castration, 
or by administration of anti-androgens that 
compete with androgens for binding to AR [2], is 
the first-line treatment for metastatic and local-
ly advanced prostate cancer. While this regi-
men is effective initially, progression to the 
presently incurable and lethal stage, termed 
castration-resistant prostate cancer (CRPC), 
invariably occurs [1, 2]. With a median survival 
of ~16-18 months [3], CRPC accounts for the 
majority of disease-related mortality. Mounting 
evidence suggests that resurgent AR drives 
therapeutic failure and castration-resistant 
progression [1, 2]. A number of ligand-depen-
dent and -independent mechanisms have been 
proposed to underlie AR reactivation during 
androgen deprivation therapy [1, 2]. While 
these mechanisms are thoroughly reviewed by 
many, this review is focused on the discussion 
of the role of constitutively-active AR splice vari-

ants that lack the functional ligand-binding 
domain (LBD) in AR-signaling reactivation. 

Structure and activity of the AR splice variants

The canonical AR protein is 919 amino acids 
long, encoded by 8 exons on the X-chromosome 
(Xq12) [4]. Structurally, the full-length AR (AR-
FL) resembles other members of the steroid 
receptor family, consisting of 4 domains (Figure 
1). The N-terminal domain (NTD) contains an 
activation function 1 (AF1) domain that func-
tions as a ligand-independent transcriptional 
activation domain. Another important function 
of NTD is recruitment of coregulators. The DNA-
binding domain (DBD) contains two zinc fingers 
that are involved in DNA recognition, dimeriza-
tion, and stabilization. The hinge domain (H) 
provides flexibility to the protein and regulates 
the nuclear translocation of the receptor 
through a canonical nuclear localization signal. 
The C-terminal LBD contains a ligand-binding 
pocket that mediates high affinity ligand-bind-
ing. A second activation function domain (AF2) 
is located in the LBD and regulates transcrip-
tional activation in a ligand-dependent manner. 
All hormonal therapies currently accepted in 
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the clinic for treatment of prostate cancer, 
including the recent FDA-approved abiraterone 
[5] and enzalutamide [6], target the LBD de 
facto.

Recently, a cadre of AR splice variants (AR-Vs) 
that are devoid of a functional LBD have been 
identified (Figure 1). Structurally, these vari-
ants either have insertions of cryptic exons 
immediately downstream of the exons encod-
ing the DBD or have deletions of the exons 
encoding the LBD, resulting in a disrupted AR 
open reading frame and the expression of trun-
cated proteins [7-12]. Since the NTD and DBD 
remain intact in the majority of the AR-Vs identi-
fied to date, many variants display constitutive 
activity [7-12]. Others are considered condition-
ally active because these variants display 
ligand-independent activity only in certain cell 
models [12]. Two major AR-Vs, AR-V7 (also 
known as AR3) and ARv567es (a.k.a. AR-V12), 
have been shown to be capable of regulating 
target gene expression in the absence of the 
AR-FL signaling [8-10, 13]. Gene expression 
profiling showed that AR-V7 and ARv567es regu-
late the expression of both canonical andro-
gen-responsive genes and a distinct set of tar-
gets enriched for cell-cycle function [9, 10, 13]. 
However, there exists significant difference in 
the AR-V transcriptome identified by different 

studies [8-10, 13], possibly due to the use of 
different model systems. 

Notably, not all AR-Vs function as a transcrip-
tion factor. For example, AR8 lacks a functional 
DBD, and has been shown to localize mainly to 
the plasma membrane [14]. AR8 may play a 
role in mediating Src kinase activation as well 
as AR-FL tyrosine phosphorylation and subse-
quent nuclear translocation in response to EGF 
treatment, possibly by forming a membrane-
associated signaling complex that includes 
AR8, AR-FL, Src kinase, and EGFR [14]. Dep- 
letion of AR8 by RNA interference compromised 
EGF-induced Src activation and AR phosphory-
lation, as well as inhibited cell proliferation and 
induced cell death [14]. Thus, AR8 activates 
the AR signaling pathway and promotes cell 
survival via a nongenomic mechanism.

Potentiation of AR-FL activity is not limited to 
the transcriptionally inactive AR8. In cells co-
expressing ARv567es and AR-FL, ARv567es could 
bind to AR-FL and facilitate the nuclear translo-
cation of AR-FL in the absence of ligand [10]. 
Similarly, AR-V7 could also facilitate the nuclear 
translocation of AR-FL in an androgen depleted 
condition or in the presence of the potent AR 
antagonist enzalutamide (Cao et al., manu-
script under review). 

Figure 1. Schematic representation of the structure of AR-FL and AR-V proteins. U, unique sequence; ZF, zinc finger.
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Detection of AR-V expression

The majority of AR-V transcripts can be detect-
ed by reverse transcription polymerase chain 
reaction (RT-PCR), taking advantage of their 
unique exon compositions and exon-exon junc-
tions. A collation of published PCR primers for 
AR-Vs is presented in Table 1. Although RT-PCR 
provides a sensitive and specific assay for the 
mRNA, the results do not always correlate with 
protein expression. For example, the transcript, 
but not the protein product, of AR-V7 has been 
detected in the LNCaP cell line [15]. To date, 
isoform-specific antibodies have only been 
reported for AR-V7 [8, 9] and AR8 [14], and the 
only commercially available antibody is for 
AR-V7 (Precision Antibodies, Columbia, MD). To 
overcome this limitation, Zhang et al. devel-
oped an immunohistochemical assay to detect 
the expression of AR-Vs by using two antibodies 
recognizing the N- and C-terminus of AR, 
respectively [16]. A decrease of AR nuclear 
staining by the C-terminal antibody when com-
pared to that by the N-terminal antibody was 
used to indicate the presence of LBD-truncated, 
transcriptionally active AR-Vs. The authors 

reported a significant loss in AR C-terminal 
nuclear immunoreactivity in CRPC specimens, 
but not in tissues from primary cancers, sug-
gesting the prevalence of AR-Vs in CRPC. The 
results were further corroborated by RT-PCR 
[16]. Despite the demonstrated success, this 
approach requires significant efforts in assay 
optimization and standardization. There is a 
great demand for the development of addition-
al isoform-specific antibodies for AR-Vs. The 
unique C-terminal peptide sequences of AR-Vs 
are presented in Figure 1. 

Clinical relevance of AR-Vs

AR-Vs are prevalently upregulated in CRPC com-
pared to hormone-naïve cancers, and may 
emerge as an adaptive response to therapies 
targeting the androgen signaling axis [8-11, 16, 
17]. It is important to recognize the existence of 
discrepancy between the relative abundance of 
AR-V mRNAs and that of AR-V proteins in clini-
cal specimens. Although the levels of AR-V 
mRNAs in metastatic CRPCs have been shown 
to constitute at most 7% of the AR-FL mRNA 
level [11, 17], Western analyses of 13 CRPC 

Table 1. Isoform-specific PCR primers for detecting AR-Vs
AR-Vs Alias PCR Primers Primer locations Product size (bp) Ref.
AR-V1 AR4 F: 5’-CCATCTTGTCGTCTTCGGAAATGTTATGAAGC-3’

R: 5’-CTGTTGTGGATGAGCAGCTGAGAGTCT-3’
Exon 3

CE1
149 [8]

F: 5’-CTACTCCGGACCTTACGGGGACATGCG-3’
R: 5’-GATTCTTTCAGAAACAACAACAGCTGCT-3’

Exon 1
Exon 3/CE1

322 [9]

AR-V2 N/A [8]

AR-V3 AR1/2/2b N/A [7, 8]

AR-V4 AR1/2/3/2b, AR5 F: 5’-CTACTCCGGACCTTACGGGGACATGCG-3’
R: 5’-CTTTTAATTTGTTCATTCTGAAAAATCCTC-3’

Exon 1
CE2

323 [9]

AR-V5 N/A [8]

AR-V6 N/A [8]

AR-V7 AR3 F: 5’-CCATCTTGTCGTCTTCGGAAATGTTATGAAGC-3’
F: 5’-TTTGAATGAGGCAAGTCAGCCTTTCT-3’

Exon 3
CE3

125 [8]

F: 5’-CTACTCCGGACCTTACGGGGACATGCG-3’
R: 5’-TGCCAACCCGGAATTTTTCTCCC-3’

Exon 1
Exon 3/CE3

314 [9]

AR-V8 N/A [11]

AR-V9 F: 5’-CCATCTTGTCGTCTTCGGAAATGTTATGAAGC-3’
R: 5’-TTAGTTCTACTTCTTAACAACGTGATCCCA-3’

Exon 3
CE5

128 [12]

AR-V10 N/A [11]

AR-V11 N/A [11]

AR-V12 ARv567es F: 5-GCCTTGCCTGATTGCGAG
R: 5’-CATGTGTGACTTGATTAGCAGGTCAAA

Exons 4/8
Exon 8

64 [12]

F: 5’-CCAAGGCCTTGCCTGATTGC-3’
R: 5’-TTGGGCACTTGCACAGAGAT-3’

Exons 4/8
Exon 8

124 [10]

AR-V13 N/A [12]

AR-V14 N/A [12]

AR8 F: 5’-CGACTTCACCGCACCTGATG-3’
R: 5’-CTCTTTCTTCGGGTATTTCGCATG-3’

Exon 1
Exons 1/3’

150 [14]
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bone metastases demonstrated that the levels 
of AR-V proteins could constitute a median of 
32% of the AR-FL protein level (ranging from 0 
to 95%) [17]. In fact, in 38% of these CRPC 
bone metastases, the AR-V proteins are 
expressed at a level comparable to that of the 
AR-FL protein [17]. The relative high abundance 
of AR-V proteins is also supported by data from 
immunohistochemistry analysis. With the use 
of an antibody specific to AR-V7, several groups 
show that AR-V7 is readily detectable in pros-
tate cancer specimens [9, 13, 18]. Using the 
two-antibodies approach described above, 
Zhang and colleagues analyzed 50 primary 
prostate cancer and 162 metastatic CRPC tis-
sues and found that 24% of these CRPC tissues 
display a staining pattern similar to that of the 
LuCaP86.2 xenograft, which predominantly 
expresses AR-V [16]. 

It is also important to recognize that the abso-
lute levels of AR-Vs may not be as important as 
that of AR-FL for their respective activity. This is 
because AR-FL is located in the cytoplasm in 
the absence of ligand and translocates to the 
nucleus and activates target-gene expression 
upon ligand binding, whereas constitutively-
active AR-Vs localize to the nucleus and acti-
vate target-gene expression in the absence of 
ligand [8-12, 19]. Strikingly, higher expression 
of AR-V7 in hormone-naïve prostate tumors 
predicts increased risk of biochemical recur-
rence following radical prostatectomy [8, 9], 
and patients with high levels of expression of 
AR-V7 or detectable expression of ARv567es have 
a significantly shorter survival than other CRPC 
patients [17], indicating an association between 
AR-V expression and a more lethal form of pros-
tate cancer. Collectively, the existing data sup-
port that AR-V proteins are expressed at a sig-
nificant level in clinical specimens and should 
not be trivialized simply based on their relative 
low mRNA abundance. 

Preclinical studies have pointed to an impor-
tant role of AR-Vs in mediating castration resis-
tance. Ectopic expression of AR-V7 or ARv567es 
confers castration-resistant growth of LNCaP 
xenograft tumors [9-11]. Conversely, knock-
down of AR-V7 attenuates the growth of castra-
tion-resistant 22Rv1 xenograft tumors [9]. 
Targeted expression of ARv567es in prostate epi-
thelium induces de novo prostate cancer devel-
opment and promotes castration-resistant pro-
gression of the tumors in transgenic mice [20]. 

Although only prostatic intraepithelial neopla-
sia lesions are observed in AR-V7 transgenic 
mice, the majority of AR-V7-positive cells in cas-
trated AR-V7 transgenic mice are ck5+/ck8+ 
intermediate cells, indicating a role of AR-V7 in 
maintaining or expanding prostate progenitor 
cell population during androgen deprivation 
[21]. 

AR-Vs have also been indicated to confer resis-
tance to abiraterone and enzalutamide in pre-
clinical studies. AR-Vs are increased in CRPC 
xenografts that recurred after abiraterone [22] 
or enzalutamide treatment (Cao et al., manu-
script under review). Knockdown of AR-Vs sen-
sitizes 22Rv1 cells and NFκB p52-transfected 
LNCaP cells to enzalutamide inhibition of 
growth [23, 24]. Reducing AR-V levels with 
small-molecule drugs improves enzalutamide 
efficacy against the growth of 22Rv1 cells and 
xenografts [25]. Intriguingly, ectopic expression 
of AR-V7 in AR-FL-overexpressing LNCaP xeno-
grafts does not affect the growth inhibitory effi-
cacy of enzalutamide [11]. A plausible explana-
tion for the discrepancy is that, in the context of 
AR overexpression, the growth of LNCaP tumors 
may be driven mainly by the AR-FL signaling, 
making enzalutamide highly effective irrespec-
tive of AR-V expression. Nonetheless, our data 
showed that, when the ectopically-expressed 
AR-FL is lost in these xenografts, they can 
become resistant to enzalutamide, and the 
resistance is accompanied by increased exp- 
ression of AR-Vs (Cao et al., manuscript under 
review). Thus, prostate cancers may evade all 
androgen-directed therapies through shifting 
towards AR-V-mediated signaling. 

Mechanisms of AR-V production

Two mechanisms have been proposed for AR-V 
production, AR gene rearrangement [26, 27] 
and increased pre-mRNA splicing [35]. Modeling 
gene rearrangement in prostate cancer cells 
showed expression of ARv567es without AR-FL in 
clonally selected cells [27]. While AR gene rear-
rangement could contribute to AR-V production 
in a subset of prostate cancers, AR-V produc-
tion at the expense of AR-FL appears to be 
inconsistent with the tight correlation between 
AR-V and AR-FL mRNAs observed in individual 
clinical specimens and in xenograft [11, 17] or 
co-expression of AR-FL and AR-V7 in CRPC 
specimens, as indicated by overlapping AR-FL 
and AR-V7 immunohistochemistry staining of 
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adjacent tumor sections [13]. Moreover, while a 
clonal selection process is required for gene-
rearrangement-mediated AR-V production to be 
manifested at the level of tumor tissues, 
change in AR-V levels in response to androgen 
deprivation was rather rapid in xenograft 
tumors [10, 11]. Further, different AR-Vs can be 
expressed in the same tissues. Clonal expan-
sion of cells with one type of gene arrangement 
could lead to expression of one specific AR-V 
but may not be able to account for the expres-
sion of different AR-Vs. Compared to gene 
arrangement, increased splicing appears to be 
more generalizable. RNA splicing is closely cou-
pled with gene transcription [36]. Androgen 
deprivation was shown to enhance the rate of 
AR-gene transcription and thereby indirectly 
contribute to increased AR pre-mRNA splicing 
to produce both AR-FL and AR-V7 [35]. A com-
prehension of the mechanisms of AR-V produc-
tion is paramount for developing effective 
means to suppress AR-V expression.

Conclusion

AR signaling is active in CRPC although the can-
cer is no longer responsive to androgen depri-
vation therapy. LBD-truncated AR splice vari-
ants not only may play a role in maintaining the 
canonical AR transcriptome in a genuine ligand-
independent manner, but may also regulate a 
unique subset of target genes. Accumulating 
clinical and preclinical data suggest that AR-Vs 
are critically involved in the treatment failure of 
first- and second-line hormonal therapies. 
Therefore, targeting the AR-Vs appears to an 
important concept and a fruitful direction of 
therapeutic development. To this end, several 
natural or synthetic compounds have been 
shown pre-clinically to inhibit AR-V actions [18, 
29-34], and proof of efficacy in clinical trials is 
keenly awaited. Furthermore, the expression of 
constitutively active AR-Vs could serve as a 
prognostic and response biomarker to guide 
treatment decisions. 
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ABSTRACT:
Upregulation of constitutively-active androgen receptor splice variants (AR-Vs) 

has been implicated in AR-driven tumor progression in castration-resistant prostate 
cancer. To date, functional studies of AR-Vs have been focused mainly on their ability 
to regulate gene expression independent of the full-length AR (AR-FL). Here, we 
showed that AR-V7 and ARv567es, two major AR-Vs, both facilitated AR-FL nuclear 
localization in the absence of androgen and mitigated the ability of the antiandrogen 
enzalutamide to inhibit AR-FL nuclear trafficking. AR-V bound to the promoter of its 
specific target without AR-FL, but co-occupied the promoter of canonical AR target with 
AR-FL in a mutually-dependent manner. AR-V expression attenuated both androgen 
and enzalutamide modulation of AR-FL activity/cell growth, and mitigated the in vivo 
antitumor efficacy of enzalutamide. Furthermore, ARv567es levels were upregulated in 
xenograft tumors that had acquired enzalutamide resistance. Collectively, this study 
highlights a dual function of AR-Vs in mediating castration resistance. In addition to 
trans-activating target genes independent of AR-FL, AR-Vs can serve as a “rheostat” 
to control the degree of response of AR-FL to androgen-directed therapy via activating 
AR-FL in an androgen-independent manner. The findings shed new insights into the 
mechanisms of AR-V-mediated castration resistance and have significant therapeutic 
implications.

INTRODUCTION

Androgen deprivation therapy, which disrupts 
androgen receptor (AR) signaling through androgen 

ablation or AR antagonists, is the first-line treatment 
for disseminated prostate cancer. While this regimen is 
effective initially, progression to the presently incurable 
and lethal stage, termed castration-resistant prostate 
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cancer (CRPC), invariably occurs [1,2]. Resurgent AR 
activity is an established driver of therapeutic failure 
and castration-resistant progression [1,2]. A number of 
ligand-dependent and –independent mechanisms have 
been proposed to underlie AR reactivation after androgen-
directed therapies [1,2]. For example, overexpression of 
the full-length AR (AR-FL) was shown to convert prostate 
cancer growth from a castration-sensitive to a castration-
resistant stage [3]. In addition, CRPC tissues were 
shown to exhibit persistent levels of androgens despite 
androgen deprivation [1,2]. These led to the development 
of the potent AR antagonist enzalutamide (MDV3100) 
and the androgen biosynthesis inhibitor abiraterone for 
treatment of metastatic CRPC [4,5]. They heralded a new 
era of prostate cancer therapy. However, many patients 
presented with therapy-resistant disease, and most initial 
responders developed acquired resistance within months 
of therapy initiation, again accompanied by increased 
prostate-specific antigen (PSA), indicating reactivated 
AR signaling [4,5]. Emerging evidences indicate that 
prostate tumors can adapt to these androgen-directed 
therapies, including the new agents, by signaling through 
constitutively-active AR splice variants (AR-Vs) that lack 
the functional ligand-binding domain [6-16].  

AR-Vs are upregulated in most CRPCs compared 
to hormone-naïve cancers [6,7,13-17]. Intriguingly, 
there is a significant discrepancy between the relative 
abundance of AR-V mRNAs and that of AR-V proteins 
in clinical specimens. While the level of AR-V mRNAs 
is low relative to that of the AR-FL, the AR-V proteins 
are expressed at a level comparable to that of AR-FL in 
a considerable portion of metastatic CRPC tissues [6,16]. 
In addition, the absolute levels of AR-Vs may not be as 
important as that of AR-FL for their respective activity.  
This is because AR-FL is located in the cytoplasm in the 
absence of ligand and translocates to the nucleus and 
activates target-gene expression upon ligand binding, 
whereas constitutively-active AR-Vs localize to the 
nucleus and activate target-gene expression in the absence 
of ligand [13-15,18-20]. AR-V7 (aka AR3) and ARv567es are 
two major AR-Vs expressed in clinical specimens [6,7,13-
15]. Strikingly, patients with high levels of expression 
of AR-V7 or detectable expression of ARv567es have a 
significantly shorter survival than other CRPC patients [6], 
indicating an association between AR-V expression and a 
more lethal form of prostate cancer.  

Preclinical studies have pointed to an important 
role of AR-Vs in mediating castration resistance. Ectopic 
expression of AR-V7 or ARv567es confers castration-
resistant growth of LNCaP xenograft tumors [13,15,20].  
Conversely, knockdown of AR-V7 attenuates the growth 
of castration-resistant 22Rv1 xenograft tumors [13].  
AR-Vs have also been shown to confer resistance to 
enzalutamide in preclinical studies. Knockdown of AR-
Vs sensitizes 22Rv1 cells and NFκB p52-transfected 
LNCaP cells to enzalutamide inhibition of growth 

[8,11]. Reducing AR-V levels with small-molecule drugs 
improves enzalutamide efficacy against the growth of 
22Rv1 cells and xenografts [21]. Thus, AR-V upregulation 
appears to be a mechanism for prostate cancer cells to 
evade androgen-directed therapies. A comprehension of 
mechanisms of AR-V action is paramount for developing 
effective means to suppress AR-V signaling.  

Gene expression profiling showed that AR-Vs 
regulate the expression of both canonical androgen-
responsive genes and a distinct set of targets enriched 
for cell-cycle function [7,13,15]. The ability of AR-Vs to 
regulate target-gene expression has been attributed largely 
to their AR-FL-independent activity [7,8,12-15,19]. 
However, AR-FL and AR-V7 immunohistochemistry 
staining of adjacent sections of CRPC specimens showed 
that AR-V is often co-expressed with AR-FL [7]. We 
reason that, in addition to binding to chromatin sites 
and regulating gene expression independent of AR-FL, 
AR-Vs may bind to chromatin as a complex with AR-
FL. Combined, these two activities may account for the 
expanded AR-V transcriptome. In fact, ARv567es has been 
shown to coimmunoprecipitate with AR-FL and facilitate 
AR-FL nuclear localization in the absence of androgen 
[15]. In the present study, we dissected the interplay 
between AR-Vs and AR-FL in regulating gene expression 
and mediating resistance to androgen-directed therapies.

RESULTS 

AR-V mitigates enzalutamide inhibition of AR-FL 
nuclear localization

Both ARv567es and AR-V7 can reside constitutively 
in the nucleus [14,15,18], and ARv567es has been shown 
to facilitate AR-FL nuclear localization in the absence 
of androgen [15]. Enzalutamide is known to attenuate 
androgen-induced AR-FL nuclear localization in cells 
expressing AR-FL alone [22]. To assess the effect of 
AR-V7 on AR-FL subcellular localization and the 
impact of AR-Vs on enzalutamide modulation of AR-
FL localization, we expressed AR-FL-green-fluorescent-
protein (AR-FL-GFP) with or without AR-V7-turbo-red-
fluorescent-protein (AR-V7-TurboFP) or ARv567es-TurboFP 
in the AR-null COS-7 cells. Consistent with previous 
reports [14,15,18], as shown in Figure 1A, both AR-Vs 
were found primarily in the nucleus, whereas AR-FL 
localized predominantly in the cytoplasm in androgen-
deprived conditions. Enzalutamide caused ~50% reduction 
of androgen-induced AR-FL nuclear localization, but had 
no effect on AR-V localization or AR-FL localization in 
the absence of androgen.  

When co-expressed with AR-V7 or ARv567es (Figure 
1B), AR-FL could localize to the nucleus in the absence 
of androgen. The nuclear localization was unaffected by 
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enzalutamide. Strikingly, although addition of androgen 
further induced AR-FL nuclear localization, enzalutamide 
could not retain AR-FL in the cytoplasm when AR-V was 
present. Moreover, AR-V localization was not affected by 
androgen or enzalutamide even when co-expressed with 
AR-FL. A similar result was obtained in the PC-3 prostate 
cancer cells (Supplementary Figure 1). Taken together, 
the data suggest that AR-Vs facilitate AR-FL nuclear 
localization in the absence of androgen and mitigate the 
ability of enzalutamide to inhibit androgen-induced AR-
FL nuclear localization. 

AR-V and AR-FL co-occupy the target-gene 
promoter

Although AR-V-mediated AR-FL nuclear 
localization may not necessarily entail a physical 
interaction between AR-V and AR-FL, ARv567es has been 
shown to coimmunoprecipitate with AR-FL, indicating 
AR-V can form a complex with AR-FL [15]. To find out 
whether they bind to target promoters as a complex, we 

performed sequential chromatin immunoprecipitation 
(Re-ChIP) analysis with an AR-V7 antibody followed 
by an AR-FL antibody in 22Rv1 cells, which express 
endogenous AR-V7 and are in part driven by AR-V7 
[23]. We had to limit the analysis to AR-V7 because it 
is the only AR-V to which a specific antibody has been 
developed.  As shown in Figure 2A, we detected co-
occupancy of AR-V7 and AR-FL on the promoter of 
the PSA gene, and the co-occupancy was unaffected 
by androgen or enzalutamide treatment. In contrast, the 
promoter of ubiquitin-conjugating enzyme E2C (UBE2C) 
is only bound by AR-V7 (Figure 2A and 2B), and ChIP 
assay showed that AR-FL knockdown (shFL) did not 
significantly affect the binding (Figure 2B). This is 
consistent with UBE2C as an AR-V-specific target [6,7].  
We then conducted a ChIP assay on the PSA promoter in 
22Rv1 cells with or without specific knockdown of AR-FL 
or AR-V7 in androgen-deprived condition. As shown in 
Figure 2C, AR-FL knockdown diminished AR-V7 binding 
to the PSA promoter. Similarly, AR-V7 knockdown (shV7) 
reduced androgen-independent AR-FL binding to the 
promoter (Figure 2D). Collectively, the data indicate that, 

Figure 1: AR-V facilitates AR-FL nuclear localization in the absence of androgen and mitigates enzalutamide inhibition 
of androgen-induced AR-FL nuclear localization. A & B. Confocal fluorescence microscopy of AR-FL and AR-V subcellular 
localization when expressed alone (A) or when co-expressed with AR-V (B) in COS-7 cells. Right panels, quantitation of % of cells with 
predominantly nuclear, equally nuclear and cytoplasmic, or predominantly cytoplasmic expression.  DRAQ5, nuclear stain. Cells cultured 
in androgen-deprived condition were pre-treated with 10 µM enzalutamide (Enz) for 2 hr, followed by treatment with or without 1 nM 
R1881 for 3 hr.  *, P < 0.05.
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in the absence of androgen, AR-V and AR-FL co-occupy 
the promoter of canonical androgen-responsive gene, but 
not AR-V-specific target, in a mutually-dependent manner.

AR-V attenuates androgen-induced AR-FL 
transactivation 

To determine the impact of promoter co-occupancy 
on target gene expression, we measured the mRNA levels 
of both canonical androgen-responsive genes (PSA and 
TMPRSS2) and AR-V-specific targets (CCNA2 and 
UBE2C) in 22Rv1 cells in response to AR-FL or AR-V7 
knockdown (Figure 3A). While knockdown of AR-FL and 
AR-V7 both reduced androgen-independent expression 
of PSA and TMPRSS2, only AR-V7 knockdown 
downregulated CCNA2 and UBE2C. Notably, although 
AR-V7 knockdown diminished basal PSA and TMPRSS2 
levels, the levels after androgen stimulation were 
essentially the same in control and AR-V7-knockdown 
cells. AR-V7 knockdown thus led to a higher magnitude 
of androgen induction of PSA (2.7-fold vs. 1.7-fold) and 
TMPRSS2 (2.6-fold vs. 1.4-fold), and enzalutamide was 
very effective in blocking the induction. Conversely, 
ectopic expression of AR-V7 or ARv567es in LNCaP cells 
dose-dependently induced basal PSA and TMPRSS2 

expression and diminished the degree of response of PSA 
and TMPRSS2 to androgen (Figure 3B and Supplementary 
Figure 2). Taken together, the data indicate that, in 
addition to trans-activating a distinct set of genes, AR-
Vs activate AR-FL in an androgen-independent manner to 
induce the expression of their shared targets. In doing so, 
AR-Vs could serve as “rheostats” to control the degree of 
response of AR-FL to androgen and to androgen-directed 
therapy.  Interestingly, while ectopic co-expression of AR-
V7 or ARv567es rendered enzalutamide ineffective against 
androgen-induced AR-FL nuclear localization (Figure 
1B), the presence of AR-V7 did not affect the ability of 
enzalutamide to inhibit androgen-dependent expression 
of PSA and TMPRSS2 (Figure 3A and Supplementary 
Figure 2). Collectively, these results suggest that AR-Vs 
could facilitate the nuclear localization of AR-FL in the 
presence of enzalutamide, but are unable to overcome the 
suppression of ligand-activated AR-FL transactivation by 
enzalutamide.  

AR-V mitigates androgen and enzalutamide 
modulation of cell growth

We proceeded to characterize the effect of AR-V7 
knockdown on androgen and enzalutamide modulation 

Figure 2: AR-V7 and AR-FL co-occupy the PSA, but not UBE2C, promoter in a mutually dependent manner. A. 
Sequential ChIP analysis in 22Rv1 cells with an AR-V7 antibody followed by an AR-FL antibody showing co-occupancy of the PSA, but 
not UBE2C, promoter by AR-V7 and AR-FL. Enzalutamide (Enz), 10 µM.  DHT, 1 nM.  B. AR-V7 ChIP analysis in 22Rv1 cells showing 
AR-V7 binding to the UBE2C promoter. C. AR-V7 ChIP analysis in 22Rv1 cells showing AR-FL knockdown diminishes AR-V7 binding 
to the PSA promoter. D. AR-FL ChIP analysis in 22Rv1 cells showing AR-V7 knockdown reduces AR-FL binding to the PSA promoter.  
The values of the IgG samples are set as 1, and the ChIP results are presented as relative fold of IgG.  *, P < 0.05. Western blots showed 
the knockdown efficacy of AR-FL and AR-V7.
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of the growth of 22Rv1 cells. Congruent with the mRNA 
data, after AR-V7 knockdown, the cells became more 
sensitive to DHT induction of growth (Figure 4A; ~2-fold 
in AR-V7-knockdown cells vs. 1.3-fold in control cells). 
Consequently, the knockdown cells were more responsive 
to enzalutamide growth inhibition than the control cells. 
We next inoculated AR-V7-knockdown cells or control 
cells in nude mice, and characterized the response of the 
ensuing tumors to enzalutamide. As shown in Figure 4B, 
growth inhibition by enzalutamide was more pronounced 
after AR-V7 knockdown (the tumor growth curves are 
presented in Supplementary Figure 3). Collectively, the 
data suggest that AR-V may contribute to enzalutamide 
resistance by dampening the response of the cells to 
androgen induction of growth.

Increased AR-Vs in tumors that had developed 
acquired resistance to enzalutamide

Enzalutamide has been demonstrated to be very 
effective against the growth of castration-resistant AR-
FL-overexpressing LNCaP xenografts [22]. As shown 
in Figure 5A, we observed the same phenomenon in 
xenografts established by inoculating LNCaP cells 

that were transduced with wild-type-AR-FL-encoding 
lentivirus into castrated nude mice. Some tumors 
resumed growth with prolonged treatment (after 7-17 
weeks) (Figure 5B).  We serially passaged the relapsed 
Tumor #1 and #2 (Figure 5B) in castrated mice treated 
with enzalutamide, and considered tumors from the 
second to fourth passages as enzalutamide resistant. 
RNA-seq analysis of four enzalutamide-sensitive tumors 
and six enzalutamide-resistant tumors showed that none 
of the tumors carried the AR F876L missense mutation 
(Figure 5C), which was identified in enzalutamide-
resistant LNCaP cells and shown to confer agonist 
activity to enzalutamide [24-26]. Instead, the transcripts 
of ARv567es and AR-V7 (trending toward significance) 
were upregulated in enzalutamide-resistant tumors, 
while the levels of AR-V4 or AR-FL transcript did not 
differ (Figure 6A-D). The upregulation of AR-V was also 
reflected at the protein level (Figure 6E). Interestingly, 
all the enzalutamide-resistant tumors that showed higher 
AR-V protein expression also express increased levels 
of glucocorticoid receptor (Supplementary Figure 4), the 
upregulation of which has been shown to be a mechanism 
of acquired resistance to enzalutamide [27]. The data 
indicate that these tumors may use multiple mechanisms 
to evade enzalutamide treatment.  

Figure 3: AR-V attenuates androgen and enzalutamide modulation of AR-target expression. A. qRT-PCR analysis showing 
reduced androgen-independent expression of PSA and TMPRSS2 after knockdown of either AR-FL or AR-V7 (left panel) and reduced 
expression of CCNA2 and UBE2C only after AR-V7 knockdown (right panel). AR-V7 knockdown also renders 22Rv1 cells more sensitive 
to DHT and enzalutamide modulation of PSA and TMPRSS2 expression. B. qRT-PCR analysis showing that AR-V transfection dose-
dependently attenuates DHT induction of PSA and TMPRSS2 in LNCaP cells. Treatment duration, 8 hr (A); 4 hr (B). Enzalutamide (Enz), 
10 µM.  DHT, 1 nM. *, P < 0.05.  #, P < 0.05 from untreated control-shRNA cells.
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Figure 4: AR-V attenuates androgen and enzalutamide modulation of cell growth. A. AR-V7 knockdown enhances the 
response of 22Rv1 cells to androgen and enzalutamide modulation of cell growth. B. Enzalutamide inhibition of 22Rv1 tumor growth 
becomes more pronounced after AR-V7 knockdown. Data are expressed as % of inhibition by enzalutamide. *, P < 0.05. Enzalutamide 
(Enz), 10 mg/kg/day.  n = 8.

Figure 5: Absence of AR F876L mutation in LNCaP tumors that have developed acquired resistance to enzalutamide.  
A. Enzalutamide (Enz) inhibits the growth of castration-resistant LNCaP tumors initially. LNCaP cells were transduced with lentivirus 
encoding wild-type (wt) AR-FL before inoculated into castrated mice. *, P < 0.05 from the control group. n = 5. B. LNCaP tumors 
resume growth after 7-17 weeks of enzalutamide treatment. The mean tumor volumes were presented as % of original tumor size at Day 
0 of treatment. C. Integrative Genomics Viewer (IGV) plot of RNA-seq data showing no detection of F876L mutation in the AR gene in 
enzalutamide-sensitive and –resistant LNCaP tumors. The brown boxes represent the relative frequencies of T877A-mutated AR that is 
present in the LNCaP tumors. The relative frequencies of the transduced wt AR remained in the tumors are denoted by the green boxes and 
tabled on the right. Allele frequency threshold was set at 0.01.
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DISCUSSION 

To date, the ability of AR-Vs to contribute to 
castration resistance has been attributed largely to their 
AR-FL-independent constitutive activity in regulating 
gene expression. Here, we identified what we believe 
to be a novel mechanism of AR-V action. We showed 
that AR-V7 and ARv567es, two major AR-Vs, not only 
facilitate AR-FL nuclear localization in the absence of 
androgen but also mitigate the ability of the antiandrogen 
enzalutamide to inhibit androgen-induced AR-FL nuclear 
localization. In the nucleus, AR-V7 binds to the promoter 
of its specific target without AR-FL, but co-occupies 
the promoter of canonical androgen-responsive gene 
with AR-FL in a mutually-dependent manner. The co-
occupancy is not affected by androgen or enzalutamide.  
Concordantly, knockdown of AR-FL and AR-V7 both 
result in reduced androgen-independent expression of 
canonical androgen-responsive genes, but only AR-
V7 knockdown downregulates AR-V-specific targets.  
Notably, although basal levels of canonical androgen-
responsive genes are diminished after AR-V7 knockdown, 
or elevated after AR-V7 or ARv567es overexpression, the 
levels after androgen stimulation are unaffected. Thus, 
AR-Vs appear to repress the degree of response of AR-

FL to androgen by activating AR-FL to induce target 
expression in an androgen-independent manner. This is 
further supported by the improved sensitivity of the cells 
to androgen induction of cell growth and enzalutamide 
inhibition of cell growth after AR-V7 knockdown. These 
collective findings suggest that, in addition to AR-FL-
independent constitutive transactivation, AR-Vs may serve 
as “rheostats” to control the degree of response of AR-FL 
to androgen and to androgen-directed therapy.  

 In the present study, we also showed that 
enzalutamide becomes more potent in thwarting 
the growth of 22Rv1 xenograft tumors after AR-V7 
knockdown, indicating that targeting both AR-Vs and 
AR-FL is needed to achieve complete AR blockade. While 
corroborating the in vitro observations from Li et al. [8] 
and Nadiminty et al. [11], the data contrast the finding 
from Watson et al. that ectopic expression of AR-V7 in 
AR-FL-overexpressing LNCaP xenograft tumors does 
not affect the growth inhibitory efficacy of enzalutamide 
[20]. A plausible explanation for the discrepancy is that, in 
the context of AR overexpression, the growth of LNCaP 
tumors may be driven mainly by the AR-FL signaling, 
making enzalutamide highly effective irrespective of 
AR-V expression. Nonetheless, we showed that, when the 
ectopically-expressed AR-FL is lost in these tumors, they 
can become resistant to enzalutamide. The resistance is 

Figure 6: Increased AR-V expression in LNCaP tumors that have developed acquired resistance to enzalutamide. 
A-D. qRT-PCR analysis of the levels of AR-V transcripts. Fold changes are calculated from the difference in mean ∆CT between the 
enzalutamide-sensitive and enzalutamide-resistant groups (2∆∆CT). E. Western blot analysis of the levels of AR-FL and AR-V proteins. 
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accompanied by increased expression of ARv567es. Thus, 
these tumors may also evade enzalutamide treatment 
through shifting towards AR-V-mediated signaling.

The significance of our finding that AR-Vs activate 
AR-FL to induce target-gene expression in an androgen-
independent manner is based on the premise that AR-Vs 
and AR-FL are often co-expressed in biological contexts. 
This is supported by overlapping AR-FL and AR-V7 
immunohistochemistry staining of adjacent sections 
of CRPC specimens [7]. This is also supported by the 
finding that androgen deprivation coordinately increases 
AR-FL and AR-V mRNAs by inducing the transcription 
of the AR gene and thereby increasing the recruitment of 
splicing factors to AR pre-mRNA to splice both AR-FL 
and AR-V mRNAs [9]. AR-V expression may also be a 
result of AR gene rearrangements [28,29], and gene-
arrangement-caused AR-V production appears to occur at 
the expense of AR-FL [29]. However, a clonal selection 
process is required for gene-rearrangement-mediated 
AR-V production to be manifested at the level of tumor 
tissues. This appears to be in contrast to the rather rapid 
change of AR-V levels observed in xenograft tumors 
after androgen ablation or androgen replacement [15,20].  
Further, different AR-Vs can be expressed in the same 
tissues. Clonal expansion of cells with one type of gene 
arrangement could lead to expression of one specific 
AR-V but may not be able to account for the expression of 
different AR-Vs. Finally, our data showing co-occupancy 
of AR-V7 and AR-FL on the PSA promoter in a mutually-
dependent manner and increased response of AR-FL 
to androgen after AR-V7 knockdown provided further 
support to the co-expression of AR-FL and AR-V in the 
same cells. Thus, the ability of AR-Vs to activate AR-FL 
in an androgen-independent manner could be as important 
as their AR-FL-independent trans-activating activity in 
mediating castration resistance.

Our finding of AR-V and AR-FL co-regulating 
the expression of canonical androgen-responsive genes 
in androgen-deprived condition is reminiscent of the 
transcriptome data from Hu et al. that knockout of AR-
FL in AR-V-transfected LNCaP cells almost completely 
abolishes the expression of at least a subset of canonical 
androgen-responsive genes [7]. In addition to regulating 
canonical androgen-responsive genes, AR-Vs have also 
been shown to regulate a distinct set of targets enriched for 
cell-cycle function [6,7,13]. This is further corroborated 
by our ChIP data showing the promoter of UBE2C is 
bound by AR-V7 but not AR-FL. Receptor dimerization 
is a crucial step of AR-FL activation [30]. ARv567es has 
been shown to co-immunoprecipitate with AR-FL [15]. 
Here, we showed that AR-V7 and AR-FL co-reside on 
the promoter of their shared target. AR-V7 and ARv567es 
can localize constitutively to the nucleus, and facilitate 
AR-FL nuclear localization in the absence of androgen. 
It is therefore possible that AR-V7 and ARv567es dimerize 
with AR-FL in the cytoplasm in an androgen-independent 

manner, and the heterodimer translocates to the nucleus 
and binds to regulatory elements of their shared targets 
to regulate the transcription of these targets. It remains 
unknown as to whether dimerization is required for AR-Vs 
to regulate their specific targets. Future studies are needed 
to define the dimeric nature of AR-Vs in regulating gene 
expression. 

In summary, our study provides further evidence to 
support AR-V upregulation as a means for prostate cancer 
cells to evade all androgen-directed therapies currently 
accepted in the clinic. Mechanistically, we identified a 
novel mechanism by which AR-Vs mediate castration-
resistant progression. We showed that AR-Vs can activate 
AR-FL to induce target expression in an androgen-
independent manner. By doing so, AR-Vs may serve as 
“rheostats” to control the degree of response of AR-FL to 
androgen and to androgen-directed therapy. Since AR-Vs 
are often co-expressed with AR-FL in biological contexts, 
this mechanism of AR-V action may be equally important 
as its AR-FL-independent activity to castration resistance. 
These findings underscore a critical need to develop 
effective means to target both AR-Vs and AR-FL to 
achieve complete AR blockade for more effective combat 
of these clinically challenging tumors. Several natural or 
synthetic compounds have been shown pre-clinically to 
inhibit AR-V and AR-FL actions [17,21,31-35]. Proof of 
efficacy in clinical trials is keenly awaited.   

METHODS

Cell Lines and Reagents

LNCaP, 22Rv1, COS-7, and PC-3 cells were 
obtained from American Type Culture Collection at 
Passage 4.  Cells used in this study were within 20 
passages (~3 months of non-continuous culturing). All cell 
lines were tested and authenticated by the method of short 
tandem repeat profiling. Enzalutamide was purchased 
from Selleck Chemicals (Houston, TX), and the purity of 
>99% was confirmed by Nuclear Magnetic Resonance. 
The following antibodies were used in Western blot 
analysis: anti-glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH, Millipore), anti-AR (N-terminus-directed; PG-
21, Millipore), and anti-AR-V7 (Precision Antibody).  
Cell growth was determined by the Sulforhodamine assay.  

Subcellular Localization   

AR subcellular localization is detected by confocal 
fluorescence microscopy. The pTurboFP-AR-V7 and 
pTurboFP-ARv567es plasmids were generated by cloning the 
cDNA fragments for AR-V7 and ARv567es, respectively, into 
the pCMV-TurboFP635 vector. COS-7 or PC-3 cells were 
transfected with indicated plasmids and cultured in phenol 
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red-free RPMI-1640 supplemented with 10% charcoal-
stripped fetal bovine serum. At 40 hr after transfection, 
cells were pre-treated with or without 10 µM enzalutamide 
for 2 hr, followed by treatment with or without 1 nM 
R1881 for 3 hr. The COS-7 cells were then fixed with 
2% paraformaldehyde, and the nuclei stained with 2.5 
µM DRAQ5 (Cell Signaling). The PC-3 cells were then 
fixed with 70% ethanol, and the nuclei stained with DAPI. 
Confocal images were obtained by using a Leica TCS SP2 
system with a 63X oil-immersion objective on a Z-stage, 
and an average of 6 fields with ~10 cells per field was 
captured for each group. Data quantitation was performed 
as described [18].  

qRT-PCR

qRT-PCR was performed as described [36]. The 
qPCR primer-probe sets for PSA, transmembrane protease, 
serine 2 (TMPRSS2), cyclin A2 (CCNA2), and UBE2C 
were from IDT. The primer sequences for AR isoforms 
were as described [13].

ChIP and Re-ChIP

ChIP and Re-ChIP were performed as described 
[37]. The following antibodies were used: mouse IgG2a 
(ab18413, abcam), rabbit IgG (ab46540, abcam), AR-FL-
specific antibody (C-terminus-directed; C-19, sc-815 x, 
Santa Cruz Biotech), AR-V7-specific antibody (AG10008, 
Precision Antibody). The PSA promoter P2-ARE primers 
described by Guo et al. [13] and the UBE2C promoter 
primers described by Wang et al. [38] were used for qPCR 
analysis of ChIP or re-ChIP DNA. The RPL30 exon 3 
control region (Cell Signaling) was used as a negative 
control.      

Tumor Xenografts

Xenograft studies were conducted essentially as 
described [22,32]. LNCaP cells (4x106) infected with 
lentivirus encoding AR-FL or 22Rv1 cells infected with 
lentivirus encoding control shRNA or AR-V7 shRNA 
were inoculated into castrated or intact nude mice (Charles 
River), respectively. The cells were mixed with 50% 
Matrigel and inoculated subcutaneously on the right dorsal 
flank. Tumor volume was calculated as 0.524 x width2 x 
length [39]. When the tumor size reached ~100 mm3, the 
mice were randomized to daily treatment with vehicle 
or 10 mg/kg/day enzalutamide through oral gavage as 
described [22].  

For the development of enzalutamide-resistant 
tumors, two LNCaP tumors that relapsed after 
enzalutamide treatment were resected, and ~20 mm3 pieces 
of the tumors were transplanted into castrated nude mice.  

When the tumor bits grew to 100~200 mm3, the mice 
started to receive 10 mg/kg/day enzalutamide through 
oral gavage. The tumors were harvested when they 
reached ~800 mm3 and serially passaged in castrated nude 
mice following the same protocol. The second to fourth 
passages of tumors were considered as enzalutamide-
resistant. All animal procedures were approved by the 
Tulane University Institutional Animal Care and Use 
Committee.

Statistical Analysis

The Student’s two-tailed t test was used to determine 
the mean differences between two groups. P < 0.05 is 
considered significant. Data are presented as mean ± SEM.
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